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A B S T R A C T

Secondary metabolites (SMs) are naturally occurring compounds produced mostly by bacteria, fungus, and
plants. They are low-molecular-weight compounds with a wide range of chemical structures and biological
functions. In contrast to main metabolites such as lipids, amino acids, carbohydrates, and nucleic acids, the
name secondary metabolite comes from the discovery that their creation is not required for organism growth
and reproduction. SMs, on the other hand, are far from secondary, and the term "specialised metabolites"
is being used to characterise them. Organic chemists, molecular biologists, and bioinformaticians are all
working on SMs manufacturing these days.
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1. Background

Microbial secondary metabolites are low molecular weight
compounds produced during the idiophase of bacterial
growth. The Bacteria forms belonging to Pseudomonas,
Bacillus and Streptomyces spp. Are prolific makers
of secondary metabolites, which include peptides,
polypeptides, phospholipids, pyrroles, phenazines,
bacteriocins, lactones, anthracyclines, quinolones,
aminoglycosides, macrolides, sisocoumarins, siderophores,
and volatiles, among other naturally occurring substances.
While these metabolites play important roles in human and
animal health, they are not necessary for the growth and
development of microorganisms like antibiotics, pigments,
growth hormones, and anticancer agents (Ruiz et al.,
2010).1 All these properties paved way for the use of
secondary metabolites.

While validation results on microbial secondary
metabolites show that the approaches yield values within
acceptable tolerance levels,2–4 our understanding of how
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to improve bioactive secondary metabolite production
is currently limited. Most Bacillus species-produced
molecules of biotechnological interest have been recognised
thus far using lengthy screening methods and wide-ranging
biochemical characterization. In general, continuous
improvement in sequencing platforms has made sequencing
technologies loftier and more powerful than ever before,
and their application allows us to conduct investigations at
a much deeper level and on a much bigger scale than ever
before. Furthermore, bioinformatics evidence supports the
idea that in-silico methodology may be used to predict new
bioactive compounds from genome sequences, as well as
their biochemical properties (Blin et al. 2017).5

2. Novel Biosensor Design Using Synthetic Biology
Applications

In the last few decades, it has become quite possible to
develop resources and approaches to boost SM generation
in bacteria. Numerous studies in synthetic biology have
focused on the rebuilding of biosynthetic gene clusters in
native or heterologous hosts, as well as the engineering
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of the host’s regulatory network. These techniques have
been widely employed on Gram-positive and Gram-negative
bacteria and have now been utilised with non-model species
as a result of the development of novel genetic tools.
There has been a huge effort to construct new inducible
systems in bacteria in order to design or restructure the
regulatory networks that governs biosynthetic gene clusters.
These elements can be utilised as biosensors to track the
rate of generation of products of interest or as regulatory
networks for gene pathway expression. (C. Liu et al.,2017).6

In this perspective, roughly some of the most important
contemporary techniques, many of which are explored
further below. The conventional method for increasing the
production of biosynthetic gene clusters is to put these
elements under the control of a powerful regulatory element,
such as the T7 RNA polymerase/T7 promoter system,
which is widely used for large-scale protein production in
Escherichia coli (S. Tabor and C. C. Richardson, 1985).7

Ross and colleagues used this strategy to produce a 34-
kb gene cluster from Pseudoalteromonas piscicida in E.
coli within the control of a T7 expression system (A. C.
Ross et al., 2015).8 This gene cluster is responsible for the
production of an alterochromide lipopeptide. Because the
T7-based expression system allows the introduction of an
orthogonal expression device into a wide variety of host
strains, such an approach does not necessitate the redesign
of native regulatory elements from the original host (K.
Terpe, 2006).9 T7-based methods, for example, the one
used to generate SM in Streptomyces in vitro, can also be
easily adapted for cell-free conditions. (S. J. Moore et al.,
2017)10 (D. Schwarz, F. Junge, F. Durst et al., 2007).10,11

Additionally, Strategies for assembling synthetic groups of
genes could increase the production of useful compounds
even further. Lack of effective genetic tools and induction
measures, which are necessary for the circuit’s success,
is one of the most frequent constraints when it comes to
developing a particular host. To increase SM production
in Streptomyces venezuelae, Phelan and colleagues (2017)
have released a series of new vectors for use in this
organism. (R. M. Phelan.et al.,2017).12

The genetic components required for fluorescence
reporter systems, induction systems, and biological sensors
in Rhodococcus opacus have been identified. (D. M.
DeLorenzo et al., 2017).13 In that study, utilising genome
mining and transcriptome analysis, the scientists were able
to improve inducible systems sensitive to arabinose (Pbad),
anhydrotetracycline (Ptet), and acetamide (Pacet), as well
as find endogenous expression systems responsible for
compounds like phenol. (D. M. DeLorenzo et al.,2017).13

Similar attempts for Streptomyces have been published
(Y. Q. Sun et al., 201714; S. Li et al., 2018),14 and
genome mining combined with transcriptome analysis
might seem to be an appealing methodology to recognize
novel expression devices for use in synthetic biology

initiatives designed in nonmodel species. To enable the
construction of the requisite circuits, it is necessary in
this scenario to provide sets of promoters with different
strengths. With this target in mind, Yang and colleagues
(2017) developed novel broadhost range promoters that
could activate gene expression in Saccharomyces cerevisiae,
Bacillus subtilis, and E. coli (S. Yang et al., 2017)15. This
groundbreaking research paved the way for the creation
of universal synthetic clusters that could be tested in
a variety of Gram-positive and Gram-negative hosts, as
well as across life kingdoms. Rohlhill et al. (2017)16

used FACS in conjunction with next-generation sequencing
(NGS) to identify enhanced promoter variants produced by
random mutagenesis of the E. coli formaldehyde inducible
promoter, whereas Yang et al. explored only a small number
of promoter variants using standard approaches. (J. Rohlhill
et al., 2017).16 By permitting researchers to examine brand-
new promoters for SM-production engineering, the Sort-Seq
method has the potential to enhance current capabilities.
As an alternative, recent developments in computational
methods have enabled the in silico creation of regulated
promoters in E. coli (M. E. Guazzaroni et al., 201417; G.
R. Amores et al., 2015).18,19

3. Microbial SM Production: Metagenomics as an
Origin of Genetic Components

Using metagenomics to search the extensive metabolic
variety present in the genomes of microorganisms found
within living samples, researchers can collect the majority
of the genetic material of bacteria resistant to growth. (L.
Fernandez-Arrojo et al., 2010).20 Unique functional gene
clusters involved in the production of bioactive chemicals
can be found by either cloning or sequencing DNA isolated
from the microbial community occupants of a specific
habitat (Figure 1) (M. E. Guazzaroni et al., 2010).21 The
creation of the activity-based metagenomic approach and
subsequent screening of metagenomic libraries enables
the determination of those specific genes encoding the
required processes. (L. F. Alves et al., 2017).22 Thus,
large multienzyme clusters (such as nonribosomal peptide
synthetases (NRPS), polyketide synthases (PKS), and
terpene synthases, to name a few) could be functionally
expressed or complete biosynthetic pathways could be
recovered using large-insert libraries, which are typically
built in cosmids or BACs (bacterial artificial chromosomes).
(C. Hertweck.,2009).23 According to J. Fu et al. (2012),18

PKS type I and NRPS pathways are often structured
into big assembly operons ranging in size from 20
to 100 kb. Numerous instances in the literature show
how metagenomics has been successfully utilised to
identify novel bioactive chemical pathways in a range of
scenarios (J. J. Banik.,2010;24 Z. Feng et al.,2011;25 A.
Felczykowska, H. A. Iqbal et al., 201426 27; S. A. Jackson et
al.,2015;28 C. J. Guo et al.,2017). Several studies employing
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next-generation sequencing technologies and subsequent
bioinformatics mining of metagenomes have yielded novel
gene clusters implicated in secondary metabolite synthesis.
(F. Y. Chang.,2013; R. A. Cacho et al.,2014;29 T. Weber et
al.,2015;30 K. Blin et al.,2017).31

By adding new genetic elements (such as structural genes
and regulatory sequences) to the synthetic biology toolkit,
metagenomics has developed into a useful methodological
tool for enhancing and expanding NP discovery from
natural sources (Figure 2) (A. L. R. Santana-Pereira, C.
A. Westmann, 2017).32 Secondary metabolite genes are
arranged into operons or clusters, which allows a collection
of functionally related enzymes to synthesise compounds in
a well-organized manner through a number of successive
steps (P. Cimermancic et al., 2014).33 The design and
manufacture of innovative complex bioactive compounds
would be enabled by novel combinations and rewiring of
these enzymes, which carry out a wide range of biochemical
alterations, as well as proper regulation of catalytic synergy.
Freestone and colleagues (2017)34 found a previously
unidentified phosphonoacetic acid synthase by rerouting a
gene cluster from Streptomyces sp. strain NRRL F-525 and
using S. lividans as the expression host. (T. S. Freestone
et al., 2017).34 In parallel, algorithms that consider a
number of genetic and nongenetic characteristics are being
developed in an effort to optimise chemical biosynthesis (H.
Zhou et al., 2015;35 S. P. Bhatia et al., 2017)36.

Fig. 1: In order to increase and improve NP discovery using DNA
isolated from the microbial populations that inhabit environmental
materials, metagenomics has emerged as a crucial strategy.
Novel genetic components are offered, which can be rewired to
produce new complex bioactive substances. These components
include structural genes, regulators, terminators, peptidesignals,
transporters, and more.

A key barrier to retrieving raw materials from
metagenomes, on the other hand, is the use of E. coli as
a host, a Gram-negative bacterium that is phylogenetically
distinct from bacteria that are native makers of NPs. (M. E.
Guazzaroni et al., 2015).37 Thus, according to research by
S. D. Bentley et al. (2002),38 Y. Ohnishi et al. (2008),39

and E. A. Barka et al. (2016)40, Gram-positive bacteria

from the phylum Actinobacteria are the most effective
producers of a variety of secondary metabolites that are
widely used in a number of medical applications. Some of
the key restrictions that hinder E. coli from being employed
as a host for NP discovery in metagenomic libraries are
codon use, transporters, regulatory signals, proper protein
folding, cofactor availability, and low substrate availability
for secondary metabolite synthesis. (A. Lewin, 2017). A
versatile model host for the heterologous expression of
NPs was created by removing unnecessary genes from
the genome of the industrial bacterium Streptomyces
avermitilis (M. Komatsu et al., 2010).41 Actinobacteria
have also developed a variety of genetic tools for genome
editing and genetic modification. (including the well-known
CRISPR/Cas system) (B. Gust et al.,2004; L. Du. et
al.,2012; A. C. Jones et al.,2013;42 D. Du, H. Huang, R.
E. Cobb, Y. Tong;2015).43–45 To summarise, while several
limitations must be overcome before these bacteria can
be used as potent host strains for metagenome library
screening, current work, which includes synthetic biology
techniques for framework engineering and genetic tool
development, appears to be very promising.

4. Biochemical Engineering of Gram-Negative
Microbials for the Generation of SMs

Several organizations have conducted research on
the metabolic engineering of SM synthesis in bacteria
in the last few years. In this sense, E. coli is one of the
most well-studied Gram-negative bacteria, with various
approaches for genetic manipulation and engineering
discovered. This bacterium became an early adopter in
the field of genetic engineering after generating the first
genetically altered E. coli in 1973. (K. R. Choi et al.,
2016).46 A noteworthy instance is the utilization of E. coli
co-cultures in the production of flavan-3-ols, a flavonoid
subclass with several medical applications. This approach
surpassed earlier attempts by a factor of 970 and allowed for
the modification of a variety of variables including carbon
supply, induction temperature, induction point, inoculation
ratio, and strain selection (J. A. Jones et al., 2016).47 In E.
coli strains, genes involved in the manufacture of myrcene,
an acyclic monoterpene, are also being affected. (E.M.
Kim et al., 2015). Myrcene, a monoterpene molecule, has
been utilised as a starting material for the production of
more complex compounds in flavours, perfumes, cosmetics,
vitamins, and pharmaceuticals (A. Behr et al., 2009).48

Myrcene levels surged 34 times (58.19 12.13mg/L) after
heterologous expression of the mevalonate (MVA) pathway
(E.M. Kim et al., 2015). Furthermore, the US Department
of Energy has designated 2-pyrrolidone, a glutamate
derivate, as a crucial C4 "Top Value-Added Chemical
from Biomass" (T. Werpy et al., 2004).49 Because of its
wide range of commercial applications, 2-pyrrolidone
is a valuable chemical. It can be used to make nylon-4,
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which is more thermally stable and hydrophilic compared
to its predecessors, using ring-opening polymerization.
With this aim in mind, a team of scientists in California
created a recombinant E. coli strain capable of generating
2-pyrrolidone utilising glutamate as a substrate. (S. J. Park
et al., 2013)50. To do this, in silico analysis was performed
to identify two ORFs from type I PK gene clusters that were
expected to be AMP-dependent synthetases. In recombinant
E. coli expressing a glutamate decarboxylase and one of
the synthetases, the efficiency of -pyrrolidone synthesis
was increased by 25% (J. Zhang et al., 2016).51 Wang et
al. (2017) presented a coexpression approach in E. coli to
produce trans-resveratrol. Resveratrol is a stilbene-family
secondary metabolite that can be obtained from a variety of
plants, aromatherapy products, and dietary substances (K.
A. Roupe et al., 2006).52 Stilbenes are used in humans to
prevent cancer, heart disease, and neurological problems.
(2006) (K. A. Roupe et al.).52 Alongside E. coli, P. putida
has been extensively used in metabolic engineering. P.
putida is a Gram-negative bacteria that can metabolize
a diverse spectrum of natural and synthesized chemical
compounds, prompting various studies to investigate
its potential use as a biocatalytic agent for industrial
and ecological purposes. (V. A. P. Martins Dos Santos.,
2004;53 E. Mart´ınez-Garc´ıa., 2015). Taking this into
account, Simm et al. (2016) reported a study in which they
modified P. putida with two E. coli genes that produce
active GGDEF and EAL domains, which are involved in
c-di-GMP synthesis and deterioration, respectively (R.
Simm., 2004).54 P. putida mutations may influence biofilm
formation in response to certain catalytic demands, such
as the biodegradation of the environmental pollutant 1
chlorobutane. When the scientists added cyclohexanone to
the growth conditions, the secondary metabolite produced
by haloalkane in P. putida biofilm generating cells increased
twice as much as in planktonic cells. (I. Benedetti et al.,
2016).55

Important research on the generation of beneficial
secondary metabolites is included in the research topic.
According to (Alenezi et al.2016), the biological activity of
Aneurinibacillus migulans isolates was directly related to
the synthesis of a novel gramicidin.

A collection of articles concentrates on the biosynthetic
gene clusters that are involved in the fabrication of
secondary metabolites in microorganisms. Another study
(Rojas-Aedo et al.2016) described the role of the adr gene
cluster in the manufacture of the powerful anticancer drug
andrastin A in Penicillium roqueforti. Finally, (Nah et al.
2015)56 evaluated the phylum Actinomycetes’ potential
for natural production (NP) via biosynthetic gene clusters
(BGC) heterologous expression systems, as well as current
methodologies generalised for substantial amount of NP
BGCs in Streptomyces heterologous hosts.

5. Future Perspectives

Currently, it is critical to isolate novel and natural
bioactive compounds to combat the failure of existing
chemotherapeutic agents in treating infectious diseases due
to increased drug resistance and a lack of knowledge
of metabolites in the health industry. The study articles
compiled for recent development and Technological
Challenges investigate the role of microorganisms from
various sources, demonstrating varied biological activities.
The development of methodologies to understand the
detailed mechanisms of cryptic genes and their relationship
to the generation of bioactive chemicals is a key challenge
that must be addressed. We must also place a greater
emphasis on the co-culture of diverse microorganisms that
have a good synergistic effect in order to develop novel
bioactive secondary compounds.
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